หน่วยเก็บข้อมูลสำรอง
เว็บมาสเตอร์ |
#หน่วยเก็บข้อมูลสำรอง
ก่อนที่จะศึกษาว่าคอมพิวเตอร์เก็บข้อมูลได้อย่างไร ผู้อ่านจะต้องทราบก่อนว่าสื่อสำหรับเก็บข้อมูลนั้นมีอะไรบ้าง เนื่องจากคอมพิวเตอร์แปลงคำสั่งและข้อมูลต่าง ๆ เก็บไว้ในรูปแบบของเลขฐานสองคือ 0 และ 1 ทั้งสิ้น โดยที่ตัวอักษร ตัวเลข และสัญลักษณ์พิเศษต่าง ๆ จะถูกแทนด้วยกลุ่มของตัวเลขเลขฐานสอง และเนื่องจากแรมเป็นหน่วยความจำที่ไม่ได้เก็บข้อมูลอย่างถาวร ถ้าปิดเครื่องหรือไฟดับข้อมูลก็หายไป ดังนั้นถ้าผู้ใช้มีข้อมูลอยู่ในแรมก็จะต้องทำการจัดเก็บข้อมูล โดยย้ายข้อมูลจากหน่วยความจำไปไว้ในหน่วยเก็บข้อมูลสำรอง เนื่องจากสามารถเก็บข้อมูลได้อย่างถาวร ไม่มีการเปลี่ยนแปลงนอกจากผู้ใช้เป็นผู้สั่ง รวมทั้งสามารถเก็บข้อมูลจำนวนมากได้ และที่สำคัญหน่วยเก็บข้อมูลสำรองจะมีราคาถูกมากเมื่อเทียบกับหน่วยความจำหลัก ทำให้คอมพิวเตอร์ในปัจจุบันจะมีหน่วย เก็บข้อมูลสำรองซึ่งสามารถเก็บข้อมูลจำนวนมาก อย่างไรก็ดีความเร็วในการอ่านและบันทึกข้อมูลของหน่วยเก็บข้อมูลสำรองจะต่ำกว่าหน่วยความจำหลัก ดังนั้นจึงควรทำงานให้เสร็จก่อน จึงย้ายข้อมูลนั้นไปไว้ในหน่วยเก็บข้อมูลสำรอง ในปัจจุบันมีหน่วยเก็บข้อมูลให้เลือกใช้หลายชนิด ดังต่อไปนี้
1.เทป (Tape)
เทปแม่เหล็ก (Magnetic Tape) เป็นหน่วยเก็บข้อมูลที่ใช้กันมานานตั้งแต่คอมพิวเตอร์ยุคที่หนึ่งและยุคที่สอง ปัจจุบันได้รับความนิยมน้อยลง เทปแม่เหล็กมีหลักการทำงานคล้ายเทปบันทึกเสียง แต่เปลี่ยนจากการเล่น (Play) และบันทึก (Record) เป็นการอ่าน (Read) และเขียน (Write) แทนในเครื่องเมนเฟรมเทปที่ใช้จะเป็นแบบม้วนเทป (Reel-to-reel) ซึ่งเป็นวงล้อขนาดใหญ่ ในเครื่องมินิคอมพิวเตอร์จะใช้คาร์ ทริดจ์เทป (Cartridge tape) ซึ่งมีลักษณะคล้ายวิดีโอเทป ส่วนในเครื่องไมโครคอมพิวเตอร์จะใช้ตลับเทป (Cassette tape) ซึ่งมีลักษณะเหมือนเทปเพลง เทปทุกชนิดที่กล่าวมามีหลักการทำงานคล้ายกับเทปบันทึกเสียง คือจะอ่านข้อมูลตามลำดับก่อนหลังตามที่ได้บันทึกไว้ เรียกหลักการนี้ว่าการเข้าถึงข้อมูลตามลำดับ (Sequential access) การทำงานลักษณะนี้จึงเป็นข้อเสียของการใช้เทปแม่เหล็กบันทึกข้อมูล คือทำให้อ่านข้อมูลได้ช้า เนื่องจากต้องอ่านข้อมูลในม้วนเทปไปเรื่อย ๆ จนถึงตำแหน่งที่ต้องการ ผู้ใช้จึงนิยมนำเทปแม่เหล็กมาสำรองข้อมูลเท่านั้น ส่วนข้อมูลที่กำลังใช้งานจะถูกเก็บอยู่บนหน่วยเก็บข้อมูลแบบ จานแม่เหล็ก (Magetic Disk) เพื่อให้เรียกใช้ได้ง่าย และนำเฉพาะข้อมูลที่สำคัญและไม่ถูกเรียกใช้บ่อยมา เก็บสำรอง (Backup) ไว้ในเทปแม่เหล็ก เพื่อป้องกันการสูญหายของข้อมูล
ข้อดีของเทปแม่เหล็ก คือสามารถบันทึก อ่าน และลบกี่ครั้งก็ได้ รวมทั้งมีราคาต่ำ นอกจากนี้ยังสามารถบันทึกข้อมูลจำนวนมาก ๆ ได้อย่างรวดเร็ว ในสื่อที่มีขนาดไม่ใหญ่มากนัก ความจุของเทปแม่เหล็กจะมีหน่วยเป็น ไบต์ต่อนิ้ว (Byte per inch) หรือ บีพีไอ (bpi) ซึ่งหมายถึงจำนวนตัวอักษรที่เก็บในเทปยาวหนึ่งนิ้ว หรือเรียกได้อีกอย่างว่าความหนาแน่นของเทปแม่เหล็ก เทปแม่เหล็กที่มีความหนาแน่นต่ำ จะเก็บข้อมูลได้ประมาณ 1,600 บีพีไอ ส่วนเทปแม่เหล็กที่มีความหนาแน่นสูง จะเก็บข้อมูลได้ประมาณ 6,250 บีพีไอ นอกจากนี้ จะมีเทปแม่เหล็กรุ่นใหม่ ๆ คือ DAT (Digital Audio Tape) ซึ่งมีขนาดใหญ่กว่าเครดิตการ์ดเล็กน้อย แต่สามารถจุข้อมูลได้ 2-5 จิกะไบต์ และ R-DAT ซึ่งสามารถเก็บข้อมูลได้มากกว่า 14 จิกะไบต์ บนเทปที่ยาว 90 เมตร การที่เทปแม่เหล็กยังคงได้รับความนิยมให้เป็นสื่อที่เก็บสำรองข้อมูล ก็เพราะความเร็ว ความจุข้อมูล และราคานั่นเอง
2. จานแม่เหล็ก (Magnetic Disk)
จานแม่เหล็กสามารถเก็บข้อมูลได้เป็นจำนวนมาก และมีคุณสมบัติในการ เข้าถึงข้อมูลโดยตรง (Direct access) ไม่จำเป็นต้องอ่านไปตามลำดับเหมือนเทป จานแม่เหล็กจะต้องใช้คู่กับ ตัวขับจานแม่เหล็ก หรือ ดิสก์ไดร์ฟ (Disk drive) ซึ่งเป็นอุปกรณ์สำหรับอ่านเขียนจานแม่เหล็ก (มีหน้าที่คล้ายกับเครื่องเล่นเทป) จานแม่เหล็กเป็นสื่อที่ใช้หลักการของการ เข้าถึงข้อมูลแบบสุ่ม (Random-access) นั่นคือ ถ้าต้องการข้อมูลลำดับที่ 52 หัวอ่านก็จะตรงไปที่ข้อมูลนั้นและอ่านข้อมูลนั้นขึ้นมาใช้งานทันที ทำให้มีความเร็วในการอ่านและบันทึกที่สูงกว่าเทปมาก หัวอ่านของดิสก์ไดร์ฟเรียกว่า หัวอ่านและบันทึก (read/write head) เมื่อผู้ใช้ใส่แผ่นจานแม่เหล็กเข้าไปในดิสก์ ไดร์ฟ แผ่นจานแม่เหล็กก็จะเข้าไปสวมอยู่ในแกนกลม ซึ่งเป็นที่ยึดสำหรับหมุนแผ่นจานแม่เหล็ก จากนั้นหัวอ่านและบันทึกก็จะอ่าน อิมพัลส์ของแม่เหล็ก (Magnetic impulse) บนแผ่นจานแม่เหล็กขึ้นมาและแปลงเป็นข้อมูลส่งเข้าคอมพิวเตอร์ต่อไป หัวอ่านและบันทึกสามารถเคลื่อนย้ายในแนวราบเหนือผิวหน้าของแผ่นจานแม่เหล็ก ถ้าใช้แผ่นจานแม่เหล็กที่มีผิวหน้าต่างกัน ก็ต้องใช้หัวอ่านและบันทึกต่างชนิดกันด้วย นอกจากนี้ เนื่องจากดิสก์ไดร์ฟนั้นเป็นเพียงอุปกรณ์เครื่องกลชนิดหนึ่งซึ่งอาจเกิดปัญหาขึ้นได้ จึงจำเป็นต้องมีการเก็บสำรองข้อมูลและโปรแกรมที่ใช้อย่างสม่ำเสมอ
ก่อนที่จะใช้แผ่นจานแม่เหล็กเก็บข้อมูล จะต้องผ่านขั้นตอนของการ ฟอร์แมต(Format) ก่อน เพื่อเตรียมแผ่นจานแม่เหล็กให้พร้อมสำหรับเครื่องรุ่นที่จะใช้งาน (เช่น เครื่อง PC และ Mac จะมีฟอร์แมตที่ต่างกันแต่สามารถใช้แผ่นจานแม่เหล็กรุ่นเดียวกันได้) โดยหัวอ่านและบันทึกจะเขียนรูปแบบของ แม่เหล็กลงบนผิวของแผ่นจานแม่เหล็ก เพื่อให้การบันทึกข้อมูลลงแผ่นจานแม่เหล็กในภายหลังทำตามรูปแบบดังกล่าว การฟอร์แมตแผ่นจานบันทึกจัดเป็นงานพื้นฐานหนึ่ง ของระบบปฏิบัติการคอมพิวเตอร์
ข้อมูลจะถูกบันทึกลงบนจานแม่เหล็กตามรูปแบบที่ได้ฟอร์แมตไว้แล้ว คือแบ่งในแนววงกลมรอบแกนหมุนเป็นหลาย ๆ วง เรียกว่า แทร็ก(Track) แต่ละแทร็กจะถูกแบ่งออกในแนวของขนมเค็กเรียกว่าเซกเตอร์ (Sector) และถ้ามีเซกเตอร์มากกว่าหนึ่งเซกเตอร์รวมกันเรียกว่า คลัสเตอร์ (Cluster) นอกจากนี้ในระบบคอมพิวเตอร์ส่วนมากจะมีตารางสำหรับจัดการข้อมูลในแผ่นจานแม่เหล็ก ซึ่งมีหน้าที่เก็บตำแหน่งแทร็กและเซกเตอร์ของข้อมูลที่อยู่ภายในจานแม่เหล็ก เรียกตารางนี้ว่า ตารางแฟต (FAT หรือ File Allocation Table) ซึ่งตารางนี้ทำให้คอมพิวเตอร์สามารถค้นหาและจัดการกับข้อมูลได้อย่างรวดเร็ว
ในปัจจุบันมีจานแม่เหล็กที่ได้รับความนิยมอย่างสูงอยู่สองชนิด คือ ฟลอปปี้ดิสก์ (Floppy Disk) และ ฮาร์ดดิสก์ (Hard Disk) โดยเครื่องไมโครคอมพิวเตอร์ที่จำหน่ายในปัจจุบันจะมีดิสก์ไดร์ฟและฮาร์ดดิสก์ติดมาด้วยเสมอ
• ฟลอปปี้ดิสก์และดิสก์ไดร์ฟ (Floppy Disk and Disk Drive)
ฟลอปปี้ดิสก์หรือที่บางครั้งนิยมเรียกว่าดิสก์เกตต์ (Diskette) เป็นแผ่นพลาสติกวงกลม ในปัจจุบันนิยมใช้ขนาด 3.5 นิ้ว (วัดจากเส้นรอบวงของวงกลม) ซึ่งบรรจุอยู่ในพลาสติกแบบแข็งรูปสี่เหลี่ยม และสามารถอ่านได้ด้วยดิสก์ไดร์ฟ เครื่องไมโครคอมพิวเตอร์ในปัจจุบันนี้ส่วนมากจะมีดิสก์ไดร์ฟอย่างน้อยครึ่งไดร์ฟเสมอ ดิสก์ไดร์ฟมีหน้าที่สองอย่างคือ อ่านและบันทึก โดยการอ่านมีหลักการทำงานคล้ายกับการเล่นซีดีเพลง ส่วนการบันทึกนั้นมีหลักการทำงานคล้ายกับการบันทึกเสียงลงในเทปบันทึกเสียง ต่างกันก็ตรงที่ผู้ใช้ไม่ต้องกดปุ่มใด ๆ เมื่อต้องการบันทึกข้อมูล เพราะโปรแกรมที่ใช้งานจะจัดการให้โดยอัตโนมัติ แผ่นดิกส์เกตต์จะมี แถบป้องกันการบันทึก (Write-protection) อยู่ด้วย ผู้ใช้สามารถเปิดแถบนี้เพื่อป้องกันไม่ให้มีการบันทึกข้อมูลอื่นทับไปหรือลบทิ้งข้อมูล จำนวนข้อมูลที่เก็บอยู่ในแผ่นดิสก์เกตต์ จะขึ้นอยู่กับความหนาแน่นของสารแม่เหล็กบนผิวของแผ่นโดยสามารถแบ่งออกเป็นสองชนิด คือ ดิสก์ความจุสองเท่า (Double density) ซึ่งปัจจุบันไม่นิยมใช้แล้ว ส่วนอีกชนิดหนึ่งคือ ดิสก์ความจุสูง (High density) ซึ่งจะเก็บข้อมูลได้มากกว่าดิสก์ที่มีความจุเป็นสองเท่าและเป็นดิสก์ที่นิยมใช้งานกันอยู่ทั่วไป
นอกจากนี้ ในปัจจุบันจะมีดิสก์เกตต์แบบพิเศษที่มีความจุสูงถึง 120 MB ต่อแผ่น ซึ่งใช้เทคโนโลยีทางด้าน Laser เรียกว่า Laser Servo (LS) ช่วยให้สะดวกในการเก็บแฟ้มข้อมูลขนาดใหญ่หรือมีปริมาณมากได้ในแผ่นเพียงแผ่นเดียว รวมทั้งสามารถอ่านดิสก์เกตต์ 720 KB และ 1.44 MB ได้ โดยมีอัตราการโอนถ่ายข้อมูลเร็วกว่าดิสก์เกตต์ปกติถึง 5 เท่า
• ฮาร์ดดิสก์ (Hard Disk)
มีหลักการทำงานคล้ายกับฟอลปปี้ดิสก์ แต่ฮาร์ดดิสก์ทำมาจากแผ่นโลหะแข็งเรียกว่า Platters ทำให้เก็บข้อมูลได้มากและทำงานได้รวดเร็ว ฮาร์ดดิสก์ส่วนมากจะถูกยึดติดอยู่ภายในเครื่องคอมพิวเตอร์ แต่ก็มีบางรุ่นที่เป็นแบบ เคลื่อนย้ายได้ (Removable Disk) โดยจะเป็นแผ่นจานแม่เหล็กเพียงแผ่นเดียวอยู่ในกล่องพลาสติกบาง ๆ มีลักษณะคล้ายกับฟอลปปี้ดิสก์ ตัวอย่างเช่น Jaz หรือ Zip Disk จาก lomega หรือ Syjet จาก Syquest ซึ่งสามารถเก็บข้อมูลได้ตั้งแต่ 1 จิกะไบต์ขึ้นไป ในแผ่นขนาดประมาณ 3.5 นิ้ว เท่านั้น และตัวไดร์ฟจะมีทั้งรุ่นที่ต่อกับคอมพิวเตอร์ทางพอร์ตขนานหรือ SCSI ฮาร์ดดิสก์ที่นิยมใช้กับเครื่องไมโครคอมพิวเตอร์ในปัจจุบัน จะประกอบด้วยจานแม่เหล็กหลาย ๆ แผ่น และสามารถบันทึกข้อมูลได้ทั้งสองหน้าของผิวจานแม่เหล็ก โดยที่ทุกแทร็ก (Track) และ เซกเตอร์ (Sector) ที่มีตำแหน่งตรงกันของฮาร์ดดิสก์ชุดหนึ่งจะเรียกว่า ไซลินเดอร์ (Cylinder)
แผ่นจานแม่เหล็กของฮาร์ดดิสก์นั้นหมุนเร็วมาก โดยที่หัวอ่านและบันทึกจะไม่สัมผัสกับผิวของแผ่นจานแม่เหล็ก ดังนั้นจึงอาจมีความผิดพลาดหรือเสียหายเกิดขึ้นได้ถ้ามีบางสิ่งอย่างเช่น ฝุ่น หรือควันบุหรี่ กีดขวางหัวอ่านและบันทึก เพราะอาจทำให้หัวอ่านและบันทึกกระแทรกกับผิวของแผ่นจานแม่เหล็ก
การที่ฮาร์ดดิสก์มีประสิทธิภาพและความจุที่สูง เนื่องจากฮาร์ดดิสก์หนึ่งชุดประกอบด้วยแผ่นจานแม่เหล็กจำนวนหลายแผ่นทำให้เก็บข้อมูลได้มากกว่าฟลอปปี้ดิสก์ โดยฮาร์ดดิสก์ในปัจจุบันจะมีความจุเริ่มตั้งแต่ 10 GB ขึ้นไป นอกจากนี้ ฮาร์ดดิสก์จะหมุนด้วยความเร็วสูงมาก คือตั้งแต่ 5,400 รอบต่อนาทีขึ้นไป ทำให้สามารถอ่านข้อมูลได้อย่างรวดเร็ว ฮาร์ดดิสก์รุ่นใหม่ ๆ ส่วนมากจะมี ความเร็วในการอ่านข้อมูลเฉลี่ย (Averge access time) อยู่ต่ำกว่า 10 มิลลิวินาที (mis) การเชื่อมต่อฮาร์ดดิสก์กับแผงวงจรหลักจะต้องมี ส่วนเชื่อมต่อฮาร์ดดิสก์ (Hard disk interface) ซึ้งจะมีวงจรมาตรฐานที่ทั้งแผงวงจรหลักและฮาร์ดดิสก์รู้จัก ทำให้ข้อมูลสามารถส่งผ่านระหว่างแผงวงจรหลักและฮาร์ดดิสก์ได้ มาตรฐานส่วนเชื่อมต่อฮาร์ดดิสก์ที่นิยมใช้ในปัจจุบันคือ EIDE (Enhanced Integrated Drive Electronics) และ SCSI (Small Computer System Interface)
3. ออปติคัลดิสก์ (Optical Disk) มีหลักการทำงานคล้ายกับการเล่นซีดี (CD) เพลง คือใช้เทคโนโลยีของแสงเลเซอร์ ทำให้สามารถเก็บข้อมูลได้จำนวนมหาศาลในราคาไม่แพงนัก
ในปัจจุบันจะมีออปติคอลอยู่หลายแบบซึ่งใช้เทคโนโลยีที่แตกต่างกันไป คือ
ซีดีรอม (CD-ROM หรือ Computer Disk Read Only Memory) แผ่นซีดีรอมจะมีลักษณะคล้ายซีดีเพลงมาก สามารถเก็บข้อมูลได้สูงถึง 650 เมตร เมกะไบต์ต่อแผ่น การใช้งานแผ่นซีดีรอมจะต้องมีเครื่องคอมพิวเตอร์ที่มีตัวซีดีรอมไดร์ฟ (CD-ROM Drive) ซึ่งจะมีหลายชนิดขึ้นกับความเร็วในการทำงาน ซีดีรอมไดร์ฟรุ่นแรกสุดนั้นมีความเร็วในการอ่านข้อมูลที่ 150 กิโลไบต์ต่อวินาที เรียกว่ามีความเร็ว 1 เท่าหรือ 1x ซีดีรอมไดร์ฟรุ่นหลัง ๆ จะอ้างอิงความเร็วในการอ่านข้อมูลจากรุ่นแรก เช่น ความเร็ว 2 เท่า (2x) ความเร็ว 4 เท่า(4x) ไปจนถึง 50 เท่า (50x) เป็นต้น โดยปัจจุบันนี้ซีดีรอมไดร์ฟที่มีอยู่ในท้องตลาดจะมีความเร็วตั้งแต่สามสิบเท่าขึ้นไป ข้อจำกัดของซีดีรอมคือสามารถบันทึกได้เพียงครั้งเดียวด้วยเครื่องมือเฉพาะเท่านั้น จากนั้นจะไม่สามารถเปลี่ยนแปลงข้อมูลเหล่านั้นได้
ซีดีรอมได้รับความนิยมใช้เป็นสื่อเก็บข้อมูลสำหรับอ่านอย่างเดียวเป็นอย่างมาก เช่น ซอฟต์แวร์ เกมส์ พจนานุกรม แผนที่โลก หนังสือ ภาพยนตร์ เป็นต้น ซึ่งในปัจจุบันซอฟต์แวร์ต่าง ๆ จะมาในรูปของซีดีรอมเป็นหลัก เนื่องจากสะดวกต่อการติดตั้งลงฮาร์ดดิสก์ ไม่ต้องทำการเปลี่ยนแผ่นบ่อย ๆ โอกาสเสียมีน้อยและต้นทุนต่ำ การบันทึกข้อมูลลงในแผ่นซีดีรอม ปกติแล้วต้องใช้เครื่องซึ่งมีราคาแพงมาก แต่ในปัจจุบันมีแผ่นซีดีรอมที่เรียกว่า ซีดีอาร์ (CD-R หรือ CD Recordable) ซึ่งสามารถบันทึกข้อมูลลงในแผ่นด้วยซีดีอาร์ไดร์ฟ (CD-R drive) ที่มีราคาไม่สูงนัก และนำแผ่นซีดีอาร์ที่มีข้อมูลบันทึกไว้ไปอ่านด้วยซีดีรอมไดร์ฟปกติได้ทันที
ซีดีอาร์ไดร์ฟสามารถบันทึกแผ่นซีดีอาร์ให้เป็นได้ทั้งซีดีรอมหรือซีดีเพลง (Audio CD) และเก็บบันทึกข้อมูลได้ประมาณ 600-900 เมกะไบต์ในหนึ่งแผ่น (ถ้าเก็บข้อมูลนั้นในแผ่นดิสก์เกตต์จะต้องใช้หลายร้อยแผ่น) ทำให้เหมาะกับการนำมาจัดเก็บข้อมูลทางด้าน มัลติมีเดีย (Multimedia) และยังมีการนำมาใช้บันทึกเป็น แผ่นต้นฉบับ (Master Disk) เพื่อนำไปผลิตแผ่นซีดีจำนวนมากต่อไป
ความเร็วของไดร์ฟซีดีอาร์จะระบุโดยใช้ตัวเลขสองตัวคือความเร็ว ในการเขียนแผ่นและความเร็วในการอ่านแผ่น คั่นด้วยเครื่องหมาย X ซึ่งหมายถึงความเร็วคิดเป็นจำนวนเท่าของ 150 กิโลไบต์ต่อวินาที เช่น 24x40 หมายถึง ไดร์ฟซีดีอาร์นั้นสามารถเขียนแผ่นด้วยความเร็ว 24 เท่า (150x24 =3600 กิโลไบต์ต่อวินาที) และอ่านแผ่นด้วยความเร็ว 40 เท่า (150x40=6000 กิโลไบต์ต่อวินาที) ในปัจจุบันจะมีไดร์ฟแบบ ซีดีอาร์ดับเบิลยู (CD-RW Drive) ที่ใช้สำหรับบันทึกข้อมูลลงบนแผ่นให้ไดร์ฟและแผ่น CD-RW ซึ่งเป็นแผ่นซีดีพิเศษที่สามารถลบแล้วบันทึกใหม่ได้คล้ายกับการบันทึกบนแผ่นดิสก์เกตต์ ทำให้ไดร์ฟและแผ่น CD-RW เริ่มได้รับความนิยมมากขึ้นเรื่อย ๆ อีกทั้งไดร์ฟ CD-RW ยังสามารถทำการบันทึกข้อมูลลงแผ่น CD-R ได้ (เขียนได้ครั้งเดียวไม่สามารถลบได้เช่นเดียวกับการเขียนด้วยไดร์ฟซีดีอาร์) ทำให้สะดวกกับการเลือกบันทึก โดยกรณีที่ต้องการเก็บข้อมูลที่ไม่การเปลี่ยนแปลงแล้ว ก็สามารถบันทึกลงแผ่นซีดีอาร์ที่มีราคาถูกกว่า และสำหรับข้อมูลที่ยังมีการเปลี่ยนแปลงบ่อย ๆ ก็สามารถบันทึกลงแผ่น CD-RW ได้
ความเร็วของไดร์ฟซีดีอาร์ดับเบิลยูจะระบุโดยใช้ตัวเลขสามตัว คือ ความเร็วในการเขียนแผ่นแบบซีดีอาร์ ความเร็วในการลบและเขียนซ้ำบนแผ่นซีดีอาร์ดับเบิ้ลยู และความเร็วในการอ่านแผ่น คั่นด้วยเครื่องหมาย x เช่น 24x10x40 หมายถึงไดร์ฟซีดีอาร์ดับเบิลยูเครื่องนั้นสามารถเขียนแผ่นด้วยความเร็ว 24 เท่า (150x24=3600 กิโลไบต์ต่อวินาที) ลบและเขียนซ้ำด้วยความเร็ว 10 เท่า (150x10=1500 กิโลไบต์ต่อวินาที) และอ่านแผ่น ด้วยความเร็ว 40 เท่า (150x40=6000 กิโลไบต์ต่อวินาที) วอร์มซีดี (WORM CD หรือ Write Once Read Many CD)
เป็นซีดีที่ผู้ใช้สามารถบันทึกข้อมูลลงในแผ่นวอร์มซีดีได้หนึ่งครั้ง และสามารถอ่านข้อมูลที่บันทึกไว้ขึ้นมากี่ครั้งก็ได้ แต่จะไม่สามารถเปลี่ยนแก้ไขข้อมูลที่เก็บไปแล้วได้อีก แผ่นวอร์มซีดีสามารถเก็บข้อมูลได้ตั้งแต่ 600 เมกะไบต์ ไปจนถึงมากกว่า 3 จิกะไบต์ ขึ้นกับชนิดของวอร์มซีดีที่ใช้งาน วอร์มซีดีจะมีจุดด้อยกว่าซีดีรอมในเรื่องของการไม่มีมาตรฐานที่แน่นอน นั่นคือแผ่นวอร์มซีดีจะต้องใช้กับเครื่องอ่านรุ่นเดียวกับที่ใช้บันทึกเท่านั้น ทำให้มีการใช้งานในวงแคบ โดยมากจะนำมาใช้ในการเก็บสำรองข้อมูลเท่านั้น
เอ็มโอดิสก์ (MO หรือ Magneto Optical disk) เป็นระบบที่ใช้หลักการของสื่อที่ใช้สารแม่เหล็ก เช่น ฮาร์ดดิสก์ กับสื่อที่ใช้แสงเลเซอร์ เช่น ออปติคัลดิสก์เข้าด้วยกัน โดย เอ็มโอไดร์ฟ จะใช้แสงเลเซอร์ช่วยในการบันทึกและอ่านข้อมูล ทำให้สามารถอ่านและบันทึกแผ่นกี่ครั้งก็ได้คล้ายกับฮาร์ดดิสก์ เคลื่อนย้ายแผ่นได้คล้ายฟลอปปี้ดิสก์ มีความจุสูงมากคือตั้งแต่ 200 MB ขึ้นไป รวมทั้งมีความเร็วในการใช้งานที่สูงกว่าฟลอปปี้ดิสก์และซีดีรอม แต่จะช้ากว่าฮาร์ดดิสก์
ข้อดีอีกประการของเอ็มโอดิสก์คือ ข้อมูลที่เก็บอยู่ในเอ็มโอดิสก์จะปลอดภัยจากสนามแม่เหล็ก ต่างกับฟลอปปี้ดิสก์และฮาร์ดิสก์ เพราะสนามแม่เหล็กเพียงอย่างเดียว ไม่มีความร้อนจากแสงเลเซอร์จะไม่สามารถเปลี่ยนแปลงข้อมูลได้ และการที่ใช้แสงเลเซอร์ช่วยในการอ่านและบันทึกข้อมูลนั้น ทำให้หัวอ่านบันทึกข้อมูลไม่จำเป็นต้องเข้าใกล้กับผิวของแผ่นดิสก์เหมือนกับฮาร์ดดิสก์ จึงช่วยลดความผิดพลาดที่เกิดจาก การล้มเหลว (Crash) ของหัวอ่าน โดยดิสก์แบบเอ็มโอสามารถมีอายุการใช้งานได้ยาวนานกว่า 30 ปีทีเดียว ข้อเสียที่สำคัญของเอ็มโอดิสก์ คือราคาเครื่องขับแผ่นเอ็มโอจะเกิดการทำงานสองขั้นตอน คือลบข้อมูลออกแล้วจึงเขียนข้อมูลใหม่เข้าไป
ดีวีดี(DVD หรือ Digital Versatile Disk) เป็นเทคโนโลยีใหม่ล่าสุดที่เริ่มได้รับความนิยมอย่างมากในปัจจุบัน แผ่นดีวีดีสามารถเก็บข้อมูลได้ต่ำสุดที่ 4.7 จิกะไบต์ ซึ่งเพียงพอสำหรับเก็บภาพยนตร์เต็มเรื่องด้วยคุณภาพสูงสุดทั้งภาพและเสียง (ในขณะที่ CD-ROM หรือ Laser Disk ที่นิยมใช้เก็บภาพยนตร์ในปัจจุบันต้องใช้หลายแผ่น) ทำให้เป็นที่คาดหมายว่าดีวีดีจะมาแทนที่ทั้งซีดีรอม เลเซอร์ดิสก์หรือแม้กระทั่งวิดีโอเทป
ข้อกำหนดของดีวีดีจะสามารถมีความจุได้ตั้งแต่ 4.7 GB ถึง 17 GB และมีความเร็วในการเข้าถึง (Access time) อยู่ที่ 600 กิโลไบต์ต่อวินาที ถึง 1.3 เมกะไบต์ต่อวินาที รวมทั้งสามารถอ่านแผ่นซีดีรอมแบบเก่าได้ด้วย และยังมีข้อกำหนดสำหรับเครื่องรุ่นที่สามารถอ่านและเขียนแผ่นดีวีดีได้ในตัว เช่น DVD-R(DVD Recordable) ซึ่งสามารถบันทึกข้อมูลได้หนึ่งครั้ง DVD-ROM ซึ่งสามารถบันทึกและลบข้อมูลได้เช่นเดียวกับดิสก์เกต และ DVD-RW ซึ่งสามารถบันทึกและลบข้อมูลได้หลายครั้ง แต่ต้องทำทั้งแผ่นในคราวเดียว เป็นต้น
4. ส่วนเชื่อมต่ออุปกรณ์ (Peripheral Interface) 4.1 ยูเอสบี (USB หรือ Universal Serial Bus)
เป็นส่วนเชื่อมต่อที่ใช้หลักการของบัสแบบอนุกรมที่ได้รับความนิยม และเป็นมาตรฐานที่ใช้กันมากที่สุดในปัจจุบัน ส่วนเชื่อมต่อยูเอสบีจะเป็นบัสอเนกประสงค์สำหรับเชื่อมต่อ อุปกรณ์ความเร็วต่ำทั้งหมดเข้าพอร์ตชนิดต่าง ๆ ด้านหลังเครื่อง จะเปลี่ยนมาเป็นการเข้ากับพอร์ตยูเอสบีเพียงพอร์ตเดียว อุปกรณ์ที่ต่อทีหลังจะใช้วิธีต่อเข้ากับพอร์ตยูเอสบีของอุปกรณ์ก่อนหน้าแบบ เรียงไปเป็นทอด ๆ (Daisy chain) ซึ่งสามารถต่อได้สูงสุดถึง 127 อุปกรณ์ และสายเชื่อมระหว่างอุปกรณ์ยาวได้ถึง 5 เมตร
อุปกรณ์ที่เป็นแบบยูเอสบีจะสนับสนุนการถอดหรือเปลี่ยนอุปกรณ์โดยไม่ต้องปิดเครื่องคอมพิวเตอร์ก่อน (Hot Swapping) รวมทั้งสนับสนุนการใช้งานแบบเสียบแล้วใช้ได้ทันที (Plug and Play) โดยส่วนเชื่อมต่อแบบยูเอสบีที่ใช้ในปัจจุบันจะใช้มาตรฐาน USB 1.1 ที่มีความเร็ว 2 ระดับ คือ 1.5 เมกะบิตต่อวินาที และ 12 เมกะบิตต่อวินาที ในขณะที่มาตรฐานรุ่นล่าสุดคือ USB 2.0 จะสามารถมีความเร็วได้ถึง 480 Mbps ซึ่งทำให้สามารถรับส่งข้อมูลคุณภาพและเสียงจำนวนมาก ๆ ได้ 4.2 อินฟราเรด (IrDa Port)
เป็นมาตรฐานส่วนเชื่อมต่อจาก Infrared Data Association(IrDa) ซึ่งเป็นการรวมตัวของกลุ่มผู้ผลิตอุปกรณ์เพื่อพัฒนามาตรฐานในการส่งผ่านข้อมูลผ่านคลื่นแสงอินฟราเรด ในปัจจุบัน ส่วนเชื่อมต่อแบบอินฟราเรดได้รับการติดตั้งในอุปกรณ์จำนวนมาก เช่น เครื่องพิมพ์ เครื่องคอมพิวเตอร์โน้ตบุค พีดีเอ โทรศัพท์เคลื่อนที่ เป็นต้น เนื่องจากส่วนเชื่อมต่ออินฟราเรดมีข้อดีคือ ไม่ต้องใช้สายในการเชื่อมต่อ ทำให้สะดวกกับการใช้งานในอุปกรณ์แบบพกพา อีกทั้งส่วนเชื่อมต่ออินฟราเรดยังมีค่าใช้จ่ายที่ต่ำมากเมื่อเทียบกับเทคโนโลยีไร้สายแบบอื่น ข้อจำกัดของส่วนเชื่อมต่อประเภทนี้คือระยะห่างระหว่างอุปกรณ์จะต้องไม่เกิน 1-3 เมตร และต้องไม่มีสิ่งกีดขวางในระหว่างอุปกรณ์ที่ใช้งาน
4.3 อุปกรณ์พีซีการ์ด (PC CARD)
เทคโนโลยีพีซีการ์ดเป็นเทคโนโลยีซึ่งเกิดจากมาตรฐาน PCMCIA (The Personal Computer Memory Card International Association) ซึ่งเป็นมาตรฐานในการออกแบบฮาร์ดแวร์และซอฟต์แวร์สำหรับอุปกรณ์ที่มีขนาดเท่ากับนามบัตร โดยอุปกรณ์ดังกล่าวอาจเป็นได้ทั้งอุปกรณ์หน่วยความจำ ตลอดจนอุปกรณ์รับหรือแสดงผลต่าง ๆ อุปกรณ์คอมพิวเตอร์แบบพีซีการ์ดจะใช้พลังงานน้อย ทนทานต่อการใช้งาน มีขนาดเล็กและน้ำหนักเบา ทำให้มีความเหมาะสมอย่างยิ่งที่จะทำงานร่วมกับคอมพิวเตอร์ที่ใช้พลังงานจากแบตเตอรี่ และต้องการพกพาไปยังที่ต่าง ๆ เช่น โน้ตบุค และพีดีเอ เป็นต้น นอกจากนี้ อุปกรณ์พีซีการ์ดยังมีการนำไปประยุกต์ใช้อย่างกว้างขวางกับอุปกรณ์ประเภทต่าง ๆ เช่น กล้องดิจิตอล อุปกรณ์บันทึกข้อมูล ตลอดจนโทรศัพท์เคลื่อนที่ เป็นต้น อุปกรณ์พีซีการ์ดสามารถแบ่งได้เป็น 3 ชนิด โดยทั้ง 3 ชนิดจะมีขนาดความกว้างและความยาวประมาณเท่ากับบัตรเครดิต รวมทั้งใช้การเชื่อมต่อด้วยคอนเน็คเตอร์แบบ 68 เข็มเหมือนกัน แต่จะแตกต่างกันที่ความหนา คือ
PC Card Type l จะมีความหนา 3.3 มิลลิเมตร นิยมใช้กับอุปกรณ์หน่วยความจำ เช่น RAM, Flash Memory และ SRAM เป็นต้น
PC Card Typd ll จะมีความหนา 5.0 มิลลิเมตร นิยมใช้กับอุปกรณ์ Input/Output เช่น แฟกซ์/โมเด็ม การ์ด LAN เป็นต้น PC Card Type lll มีความหนา 10.5 มิลลิเมตร จะใช้กับอุปกรณ์ที่มีส่วนประกอบค่อนข้างหนา เช่นอุปกรณ์บันทึกข้อมูลประเภทฮาร์ดดิสก์ เป็นต้น
5. ยูพีเอส (UPS) ยูพีเอส หรือ Uninterruptible Power Supply เป็นอุปกรณ์สำหรับจ่ายกระแสไฟฟ้าสำรองจากแบตเตอรี่ เพื่อเป็นแหล่งพลังงานฉุกเฉินในกรณีเกิดปัญหากับระบบไฟฟ้าหลัก เช่น ไฟดับ ไฟตก ไฟเกิน เป็นต้น โดยปกติแล้วยูพีเอสจะสามารถจ่ายพลังงานให้เครื่องคอมพิวเตอร์และอุปกรณ์ต่าง ๆ ทำงานได้ต่ออีกหลายนาทีหลังจากไฟฟ้าดับ ทำให้ผู้ใช้สามารถจัดเก็บข้อมูลหรือทำ ขั้นตอนปิดระบบ (Shutdown) ให้เรียบร้อย และหากเป็นยูพีเอสที่มีกำลังไฟฟ้าสูงก็จะสามารถจ่ายกระแสไฟฟ้าให้ใช้งานได้หลายชั่วโมง นอกจากนี้ในปัจจุบัน จะมียูพีเอสซึ่งมีซอฟต์แวร์มาช่วยในการจัดเก็บข้อมูลและปิดระบบโดยอัตโนมัติเมื่อระบบไฟฟ้ามีปัญหา ซึ่งจะมีประโยชน์ในกรณีที่ผู้ใช้ไม่ได้อยู่ใกล้เครื่องคอมพิวเตอร์ในขณะนั้น
ยูพีเอสสามารถแบ่งออกได้เป็นสองประเภท คือ
Standby Power systems จะเป็นระบบยูพีเอสที่ในเวลาปกติจะให้อุปกรณ์ต่าง ๆ ใช้พลังงานจากระบบไฟฟ้าโดยตรง แต่จะคอยตรวจสอบพลังงานไฟฟ้าและทำการเปลี่ยนไปใช้พลังงานจากแบตเตอรี่ทันทีที่ตรวจพบปัญหา จุดด้อยคือการเปลี่ยนอาจใช้เวลาหลายมิลลิวินาที ซึ่งช่วงเวลานี้เครื่องคอมพิวเตอร์จะไม่ได้รับพลังงานไฟฟ้า ทำให้อาจเกิดปัญหากับอุปกรณ์บางอย่างที่มีความไวสูง มีข้อดีคือราคาต่ำและสูญเสียพลังงานไฟฟ้าน้อยมาก บางครั้งอาจเรียกระบบนี้ว่า Line-interactive UPS On-line UPS systems เป็นระบบยูพีเอสที่คอยจ่ายพลังงานไฟฟ้าให้กับอุปกรณ์ต่าง ๆตลอดเวลาไม่ว่าระบบไฟฟ้าหลักจะมีปัญหาหรือไม่ ทำให้ได้พลังงานไฟฟ้าที่มีคุณภาพสูงอยู่ตลอดเวลา มีข้อเสียคือราคาแพง และมีการสูญเสียพลังงานไฟฟ้าไปกับการแปลงไฟฟ้าตลอดเวลา รวมทั้งมีอายุการใช้งานสั้นกว่าด้วย บางครั้งอาจเรียกระบบนี้ว่า Double Conversion UPS เนื่องจาก UPS ประเภทนี้จะต้องทำการแปลงไฟฟ้ากระแสสลับจากแหล่งจ่ายไฟไปเป็นกระแสตรง และแปลงกลับมาเป็นกระแสสลับให้อุปกรณ์คอมพิวเตอร์ใช้อีกครั้งหนึ่ง
6. แบตเตอรี่แบบเติมประจุ (Rechargeable battery)
แบตเตอรี่แบบเติมประจุ ได้รับความนิยมมาใช้ในอุปกรณ์แบบพกพา เช่น เครื่องคอมพิวเตอร์โน้ตบุค เครื่องพีดีเอ โทรศัพท์เคลื่อนที่ เป็นต้น เนื่องจากแบตเตอรี่รุ่นใหม่ ๆ สามารถใช้งานได้อย่างยาวนาน และสามารถเติมประจุซ้ำ ๆ ได้หลายร้อยครั้ง ทำให้ประหยัดกว่าการใช้แบตเตอรี่แบบใช้แล้วทิ้งเป็นอย่างมาก นอกจากนี้ บางรุ่นยังสามารถรายงานระดับพลังงานที่เหลืออยู่เพื่อให้ผู้ใช้ทราบได้ว่าสามารถใช้งานอุปกรณ์ชิ้นนั้น ได้อีกนานเท่าใด แบตเตอรี่แบบเติมประจุที่ได้รับความนิยมในปัจจุบัน สามารถแบ่งเป็นสามประเภท คือ NiCD battery แบตเตอรี่แบบนิกเกิลแคดเมียม (Nickel Cadmium) เป็นแบตเตอรี่ที่มีราคาถูก สามารถทำการประจุซ้ำได้ประมาณ 700-1000 ครั้ง แต่ แบตเตอรี่ประเภทนี้จะสามารถใช้งานได้ไม่นานนัก และมีปัญหา Memory effect ทำให้ต้องทำการใช้งานให้ประจุหมดทุกครั้งก่อนที่จะทำการเติมประจุใหม่
NiMH battery แบตเตอรี่แบบนิกเกิลเมตัลไฮไดร์ด (Nichel Metal Hydride) เป็นแบตเตอรี่ที่ได้รับความนิยมอย่างมาก เนื่องจากให้พลังงานที่ยาวนานกว่าแบบ NicD ประมาณ 40-50 เปอร์เซ็นต์ อีกทั้งไม่มีปัญหา Memory effect ทำสามารถเติมประจุเมื่อใดก็ได้ สามารถทำการเติมประจุได้ประมาณ 500 ครั้ง ข้อเสียของแบตเตอรี่ประเภทนี้คือจะมีการสูญเสียพลังงานประมาณ 5 เปอร์เซ็นต์ทุกวันไม่ว่าจะมีการใช้งานหรือไม่ก็ตาม
Lithium-Ion battery แบตเตอรี่แบบลิเธียมไอออน (Lithium-Ion) เป็นแบตเตอรี่ที่กำลังได้รับความนิยมมากขึ้นเรื่อย ๆ เนื่องจากให้พลังงานที่สูงกว่า แบบ NiMH ประมาณ 2 เท่า ไม่มีปัญหา memory effect เติมประจุได้ประมาณ 500 ครั้ง และมีน้ำหนักที่เบา ทำให้มีความเหมาะสมในการนำมาใช้กับอุปกรณ์พกพาต่าง ๆ เป็นอย่างยิ่ง ข้อเสียของแบตเตอรี่ประเภทนี้คือราคาที่ค่อนข้างสูงกว่าประเภทอื่น ๆ พอสมควร
7. Modem (modulation-Demodulation) จะเป็นอุปกรณ์ที่ใช้เชื่อมต่อกับระบบเครือข่ายภายนอกผ่าน สายโทรศัพท์ดั้งเดิม (POTS) ซึ่งปกติใช้ส่งสัญญาณเสียงเท่านั้น โมเด็มมีหน้าที่ในการแปลงสัญญาณดิจิตอลจากคอมพิวเตอร์ ให้เป็นสัญญาณอนาลอก เพื่อส่งผ่านไปตามสายโทรศัพท์ และเมื่อได้รับข้อมูลก็ทำการแปลงสัญญาณอนาลอกที่ได้รับให้เป็นสัญญาณดิจิตอล เพื่อให้คอมพิวเตอร์นำไปประมวลผล ในปัจจุบันนี้ สามารถส่งผ่านโมเด็มได้ด้วยความเร็วสูงสุดตามมาตรฐาน V.90 ของ ITU ที่ 56 kbps
โมเด็มสามารถแบ่งเป็นแบบต่าง ๆ ได้คือ
โมเด็มภายใน (Internal MODEM) จะเป็นโมเด็มแบบเป็นการ์ดใช้เสียบกับช่องขยายเพิ่มเติมในเครื่องคอมพิวเตอร์ มีข้อดีคือราคาถูกและไม่ต้องเสียบไฟแยกต่างหาก โมเด็มแบบภายนอก (External MODEM) จะเป็นกล่องสำหรับเชื่อมต่อเข้ากับเครื่องคอมพิวเตอร์ผ่านทาง พอร์ตอนุกรม (serial port) หรือ ยูเอสบี (USB) มีข้อดีคือเคลื่อนย้ายได้ง่าย และมีไฟแสดงสถานะการทำงาน
โมเด็มแบบกระเป๋า (Pocket MODEM) จะเป็นโมเด็มขนาดเล็กที่สามารถพกใส่กระเป๋าเสื้อได้และเสียบเข้ากับพอร์ตอนุกรม
โมเด็มแบบการ์ด (PCMCIA MODEM) จะเป็นโมเด็มที่มีขนาดเท่ากับบัตรเครดิตเท่านั้น นิยมใช้กับเครื่องโน้ตบุคโดยเสียบผ่านช่องเสียบแบบ PCMCIA Type ll 8. หน่วยความจำหลัก (Main Memory Unit)
เป็นอุปกรณ์ที่ใช้ในการจดจำข้อมูลและโปรแกรมต่าง ๆ ที่อยู่ระหว่างการประมวลผลของคอมพิวเตอร์ บางครั้งอาจเรียกว่า หน่วยเก็บข้อมูลหลัก (Primary storage) หน่วยความจำหลักที่นิยมใช้งานอยู่ในปัจจุบัน สามารถแบ่งอออกได้เป็น 2 ประเภท
1. หน่วยความจำหลักแบบอ่านได้อย่างเดียว (Read Only Memory)
เรียกสั้น ๆ ว่า รอม (ROM) เป็นหน่วยความจำที่มีคุณสมบัติในการเก็บข้อมูลไว้ได้ตลอดโดย ไม่ต้องใช้ไฟฟ้าหล่อเลี้ยง (Non-Volatile) นั่นคือแม้จะปิดเครื่องไปแล้วเมื่อเปิดเครื่องใหม่ข้อมูลในรอม ก็ยังอยู่เหมือนเดิม นิยมใช้เป็นหน่วยความจำสำหรับเก็บชุดคำสั่งในการเริ่มต้นระบบ หรือชุดคำสั่งที่สำคัญ ๆ ของคอมพิวเตอร์ คำสั่งเริ่มต้นระบบจะถูกเก็บไว้ในชิปชื่อ ROM BIOS (Basic Input / Output System) ข้อเสียของรอมคือจะไม่สามารถแก้ไขหรือเพิ่มเติมชุดคำสั่งได้ในภายหลัง รวมทั้งมีความเร็วในการทำงานช้ากว่าหน่วยความจำแบบแรม นอกจากนี้ ในปัจจุบันยังมีรอมที่เป็นชิปพิเศษแบบต่าง ๆ อีก คือ
PROM (Programmable Read-Only Memory) เป็นหน่วยความจำแบบ ROM ที่สามารถบันทึกด้วยเครื่องบันทึกพิเศษได้หนึ่งครั้ง จากนั้นจะลบหรือแก้ไข้ไม่ได้ EPROM(Erasable PROM) เป็นหน่วยความจำ ROM ที่ใช้แสงอัลตราไวโอเลตในการเขียนข้อมูล สามารถนำออกจากคอมพิวเตอร์ไปลบโดยใช้เครื่องมือพิเศษและบันทึกข้อมูลใหม่ได้
EEPROM (Electrically Erasable PROM) จะเป็นเทคโนโลยีซึ่งรวมเอาข้อดีของรอมและแรมเข้าด้วยกัน กล่าวคือจะเป็นชิปที่ใช้ไฟฟ้าในการหล่อเลี้ยง (non-volatile) สามารถเขียน แก้ไข หรือลบข้อมูลที่เก็บไว้ได้ด้วยโปรแกรมพิเศษ โดยไม่ต้องถอดออกจากเครื่องคอมพิวเตอร์เลย ทำให้เปรียบเสมือนหน่วยเก็บข้อมูลสำรองที่มีความเร็วสูงอย่างไรก็ตาม หน่วยความจำชนิดนี้จะมีข้อด้อยอยู่ 2 ประการเมื่อเทียบกับหน่วยเก็บข้อมูลสำรอง นั่นคือราคาที่สูงและมีความจุข้อมูลต่ำกว่ามาก ทำให้การใช้งานยังจำกัดอยู่กับงานที่ต้องการความเร็วสูง และเก็บข้อมูลไม่มากนัก ตังอย่างของหน่วยความจำแบบ EEPROM ที่รู้จักกันดีคือ หน่วยความจำแบบแฟลช (Flash memory) ซึ่งนิยมนำมาใช้เก็บ BIOS ในเครื่องรุ่นใหม่ ๆ
เสริมศัพท์ ความเร็วในการเข้าถึง (Access time) คือเวลาที่โปรแกรมหรืออุปกรณ์ใช้ในการหาข้อมูลให้คอมพิวเตอร์นำไปประมวล นิยมใช้เป็นค่าสำหรับบอกความเร็วของอุปกรณ์เก็บข้อมูล เช่น หน่วยความจำหลัก และหน่วยเก็บความจำสำรอง โดยหน่วยความจำหลักจะมีความเร็วอยู่ในหน่วยของ nanoseconds(ns หรือ หนึ่งส่วนพันล้านวินาที)
ความเร็วในการเข้าถึงของหน่วยความจำ เป็นปัจจัยสำคัญอย่างหนึ่งที่มีผลกระทบกับประสิทธิภาพของซีพียู โดยจะต้องมีความเร็วพอที่จะสามารถส่งข้อมูลให้ซีพียูได้ในทันที ไม่เช่นนั้นซีพียูจะต้องมีการกำหนดว่าใหยุดรอระยะหนึ่งทุกครั้งที่อ่านเขียนข้อมูลจากหน่วยความจำ เรียกว่า เวทสเตท (Wait state) ซึ่งมีหน่วยเป็น วงรอบสัญญาณนาฬิกา (Clock cycle)
ส่วนความเร็วในการเข้าถึงของหน่วยเก็บความจำสำรอง จะเรียก ความเร็วในการเข้าถึงเฉลี่ย (Average access time) ซึ่งประกอบด้วยเวลาที่ไดร์ฟใช้ในการหาแทร็กที่ถูกต้อง กับเวลาเฉลี่ยในการเลื่อนหัวอ่าน (average seek time) ไปยังตำแหน่งที่ต้องการ นิยมใช้เป็นหน่วยวัดความเร็วในอุปกรณ์แบบเข้าถึงข้อมูลโดยตรง (Direct access) เช่น ฮาร์ดดิสก์ เป็นต้น 2. หน่วยความจำหลักแบบแก้ไขได้ (Random Access Memory)
นิยมเรียกสั้น ๆ ว่า แรม (RAM) หมายถึงหน่วยความจำความเร็วสูงซึ่งเป็นที่เก็บโปรแกรมและข้อมูลในคอมพิวเตอร์ ถ้าไม่มีหน่วยความจำความเร็วสูงนี้ โปรเซสเซอร์ก็จะทำงานไม่ได้เลย เนื่องจากความจำแรมเป็นเสมือนกระดาษทด ที่เก็บข้อมูลทุกอย่างที่โปรเซสเซอร์ใช้ในขณะกำลังทำงานอยู่ เพราะอุปกรณ์ที่เก็บข้อมูลอื่น เช่น ดิสก์ไดร์ฟ จะมีความเร็วในการอ่านและบันทึกข้อมูลช้ามาก ขณะที่ซีพียูทำงานจึงต้องทำงานกับหน่วยความจำแรมที่มีความเร็วสูงเสมอโดยปกติแล้ว ถ้าคอมพิวเตอร์มีหน่วยความจำมาก ก็จะสามารถทำงานได้เร็วขึ้น เพราะมีเนื้อที่สำหรับเก็บคำสั่งของโปรแกรมต่าง ๆ ได้ทั้งหมด ไม่ต้องเรียกคำสั่งที่ใช้มาจากหน่วยเก็บข้อมูลสำรอง ซึ่งจะทำให้การทำงานช้าลงอย่างมาก แผงวงจรหลัก (Main board) ที่อยู่ในเครื่องคอมพิวเตอร์ โดยปกติจะถูกออกแบบมาให้สามารถเพิ่ม ชิปหน่วยความจำ(memory chip) ได้โดยง่าย เนื่องจากถ้าผู้ใช้ต้องทำงานกับ โปรแกรมที่มีการคำนวณซับซ้อนหรือทำงานกับภาพกราฟิก ก็อาจจำเป็นต้องทำการเพิ่มหน่วยความจำให้มากขึ้น
คอมพิวเตอร์ขนาดใหญ่ส่วนมากจำเป็นต้องมีหน่วยความจำจำนวนมาก เนื่องจากคอมพิวเตอร์นี้จะมีผู้ใช้หลายคนทำงานพร้อม ๆ กัน โดยใช้หลักการของ มัลติโปรเซสซิง (Multiprocessing) ทำให้ต้องมีการแบ่งเนื้อที่ในหน่วยความจำ เพื่อเก็บโปรแกรมของผุ้ใช้แต่ละคนสามารถประมวลผลไปในเวลาเดียวกันมากขึ้น
หน่วยความจำ RAM ที่นิยมใช้ในปัจจุบัน คือ DRAM (Dynamic RAM) เป็นหน่วยความจำที่มีการใช้งานกันมากที่สุดในปัจจุบัน จะมีวงจรคล้ายตัวเก็บประจุเพื่อจัดเก็บแต่ละบิตของข้อมูล ทำให้ต้องมีการย้ำสัญญาณไฟฟ้าเข้าไปก่อนที่จะสูญหาย เรียกว่า การรีเฟรช (Refresh) หน่วยความจำ DRAM จะมีข้อดีที่ราคาต่ำ แต่ข้อเสียคือมีความเร็วในการเข้าถึง (Access time) ประมาณ 50 – 150 nanoseconds ซึ่งไม่สูงนักเนื่องจากต้องมีการรีเฟรชข้อมูลอยู่ตลอดเวลา ทำให้มีการนำเทคนิค ต่าง ๆ มาช่วยลดเวลาในการเข้าถึงข้อมูล และเกิด DRAM ชนิดย่อย ๆ เช่น FPM (Fast Page Mode) RAM, EDO (Extended Data Output) RAM, SDRAM (Synchronous DRAM), DDR (Double Data Rate) SDRAM และ RDRAM (Rambus DRAM) เป็นต้น
นอกจากนี้ ยังมี DRAM แบบพิเศษซึ่งมีการปรับปรุงให้ทำงานเร็วขึ้นเพื่อใช้เป็น หน่วยความจำสำหรับระบบแสดงผลกราฟิก ซึ่งต้องการหน่วยความจำที่สามารถถ่ายโอนข้อมูลด้วยความเร็วสูง เช่น VRAM(Video RAM), WRAM (Window RAM), SGRAM (Synchronous Graphics RAM) และ MDRAM (Multibank RAM) เป็นต้น
Link: คลิ๊กที่นี่ |